Physics(Fundamental science).....

Physics is the natural science of matter, involving the study of matter,[a] its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force.[2] Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves.[b][3][4][5] A scientist who specializes in the field of physics is called a physicist.

Physics is one of the oldest academic disciplines and, through its inclusion of astronomy, perhaps the oldest.[6] Over much of the past two millennia, physics, chemistrybiology, and certain branches of mathematics were a part of natural philosophy, but during the Scientific Revolution in the 17th century these natural sciences emerged as unique research endeavors in their own right.[c] Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences[3] and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy.Advances in physics often enable new technologies. For example, advances in the understanding of electromagnetismsolid-state physics, and nuclear physics led directly to the development of new products that have dramatically transformed modern-day society, such as televisioncomputersdomestic appliances, and nuclear weapons;[3] advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.

Ancient astronomy

Astronomy is one of the oldest natural sciences. Early civilizations dating back before 3000 BCE, such as the Sumeriansancient Egyptians, and the Indus Valley Civilisation, had a predictive knowledge and a basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky,[6] which could not explain the positions of the planets.
According to Asger Aaboe, the origins of Western astronomy can be found in Mesopotamia, and all Western efforts in the exact sciences are descended from late Babylonian astronomy.[11] Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies,[12] while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey; later Greek astronomers provided names, which are still used today, for most constellations visible from the Northern Hemisphere.[13]

 Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause.[14] They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment;[15] for example, atomism was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus.[16]

Medieval European and Islamic

The Western Roman Empire fell in the fifth century, and this resulted in a decline in intellectual pursuits in the western part of Europe. By contrast, the Eastern Roman Empire (also known as the Byzantine Empire) resisted the attacks from the barbarians, and continued to advance various fields of learning, including physics.[17]

In the sixth century, Isidore of Miletus created an important compilation of Archimedes' works that are copied in the Archimedes Palimpsest.

In sixth-century Europe John Philoponus, a Byzantine scholar, questioned Aristotle's teaching of physics and noted its flaws. He introduced the theory of impetus. Aristotle's physics was not scrutinized until Philoponus appeared; unlike Aristotle, who based his physics on verbal argument, Philoponus relied on observation. On Aristotle's physics Philoponus wrote:

But this is completely erroneous, and our view may be corroborated by actual observation more effectively than by any sort of verbal argument. For if you let fall from the same height two weights of which one is many times as heavy as the other, you will see that the ratio of the times required for the motion does not depend on the ratio of the weights, but that the difference in time is a very small one. And so, if the difference in the weights is not considerable, that is, of one is, let us say, double the other, there will be no difference, or else an imperceptible difference, in time, though the difference in weight is by no means negligible, with one body weighing twice as much as the other[19]

Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method.

Although Aristotle's principles of physics was criticized, it is important to identify the evidence he based his views off of.  When thinking of the history of science and math, it is notable to acknowledge the contributions made by older scientists. Aristotle's science was the backbone of the science we learn in schools today. Aristotle published many biological works including The Parts of Animals, in which he discusses both biological science and natural science as well. It is also integral to mention the role Aristotle had in the progression of physics and metaphysics and how his beliefs and findings are still being taught in science classes to this day. The explanations that Aristotle gives for his findings are also very simple. When thinking of the elements, Aristotle believed that each element (earth, fire, water, air) had its own natural place. Meaning that because of the density of these elements, they will revert back to their own specific place in the atmosphere.[24] So, because of their weights, fire would be at the very top, air right underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go into its own natural place. For example, if there is a fire on the ground, if you pay attention, the flames go straight up into the air as an attempt to go back into its natural place where it belongs. Aristotle called his metaphysics "first philosophy" and characterized it as the study of "being as being".[25] Aristotle defined the paradigm of motion as a being or entity encompassing different areas in the same body.[25] Meaning that if a person is at a certain location (A) they can move to a new location (B) and still take up the same amount of space. This is involved with Aristotle's belief that motion is a continuum. In terms of matter, Aristotle believed that the change in category (ex. place) and quality (ex. color) of an object is defined as "alteration". But, a change in substance is a change in matter. This is also very close to our idea of matter today.

He also devised his own laws of motion that include 1) heavier objects will fall faster, the speed being proportional to the weight and 2) the speed of the object that is falling depends inversely on the density object it is falling through (ex. density of air).[26] He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it.[26] This is also seen in the rules of velocity and force that is taught in physics classes today. These rules are not necessarily what we see in our physics today but, they are very similar. It is evident that these rules were the backbone for other scientists to come revise and edit his beliefs. 


Comments

Popular posts from this blog

Veer Maharana Pratap ...